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Motivation: Edge Plasma Physics

• Collisionality varies by ×1000
across the edge of a tokamak
fusion reactor

ν

k‖vT
∼ qR

λ

• Collisionality varies by ×100
from midplane to target plate

• Traditional fluid theory is invalid
in the collisionless region

• Need quantitative theory to
connect collisionless and
collisional limits
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A Brief History of Fluid Closure Theory

• Fluid equations have been studied for over 200 years
• Closure of moment hierarchy rests on

strong collisionality assumption: ω � ν and kλ� 1

Navier-Stokes (1800’s) −→ Chapman-Enskog (1939)

• Magnetized plasmas break these assumptions
• Large gyro-frequency Ω = eB/m� ν

• Small perpendicular scales ρ = v⊥/Ω ≪ λ

• Large Knudsen number k‖λ� 1

• Gyro-fluid closures attempt to extend to k⊥ρ ≤ 1

• Magnetized fluid equations for k⊥ρ� 1 solved by late 1950s

L. Spitzer, H. Grad, S. I. Braginskii

• Gyro-fluid closures extend fluid theory to k⊥ρ ∼ 1

A. Brizard (1989)
G. W. Hammett, W. Dorland, M. Beer, P. B. Snyder (1992-. . . )
R. E. Waltz, G. D. Kerbel, J. Milovich, G. W. Hammett (1995-. . . )

Claude-Louis Navier

Sir George Gabriel
Stokes
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Some Modern Developments in Fluid Closure Theory

• Linear fluid theory extended to large Knudsen number k‖λ� 1

• Laser-plasma interactions (LPI) drove research on closures for weakly collisional regime:

J. F. Luciani, et al. (1983), J. R. Albritton PRL (1983)
E. M. Epperlein, R. W. Short, A. Simon, PRL (1992)

• Collisionless limit (i.e. Landau damping) first clearly understood:

E. Ott & R. N. Sudan (1969) and G. W. Hammett & F. W. Perkins (1990)

• Collisional closures begin to connect the collisional and collisionless limits:

Z. Y. Chang & J. D. Callen (1992), M. Beer, et al. (1996), P. B. Snyder, et al. (1997)

• Recently, high accuracy linear collisional Landau-fluid closures have
been developed
• Extended Chapman-Enskog theory: J.-Y. Ji & E. Held, POP (2014)

• Extended 3+1 theory: I. Joseph & A. M. Dimits, CPP (2016), J.-Y. Ji & I. Joseph POP (2014)

• Trapped Particles/Neoclassical: G. Staebler, J. E. Kinsey, R. E. Waltz (2007)

• Extensions to nonlinear regime is nontrivial
• LPI: G. Schurtz, Ph. D. Nicolai, M. Busquet, POP (2000), Ph. D. Nicolai, et al., POP (2006)

• Trapped Particle Nonlinearity: N. Mattor and S. E. Parker, PRL (1997), . . .
I. Holod, J. Weiland, A. Zagorodny, POP (2002)

• Comparison of nonlinear models: J. P. Broderick, et al., POP (2018)
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Gyrokinetic equation is the starting point

• Rapid gyro-averaging allows us to consider gyro-averaged
distribution f(v‖, µ)

• Here we will assume k⊥ρ⊥ ∼ k‖ρ‖ � 1 −→ drift kinetic regime

• The gyro-kinetic equation in a constant magnetic field ~B
coordinates {x, v‖, µ} with Jacobian J = B

∂tJ f + ~∂x · J f~v + ∂mv‖J fF‖ = J C[f ]

• Guiding center velocity ~v = v‖b̂+ ~E × b̂/B + . . .

• Parallel force F‖ = eE‖ − µ∂‖B

• Collision operator C[f ]

• For simplicity, here, we neglect ∇B effects in closure
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Fluid theory takes moments to obtain a finite set of equations

• Full Moments (uncentered)

Mj,2l =

∫
v‖
j(µB/m)lf2πdv‖dµB

• Centered Moments w.r.t. mean flow velocity u‖

mj,2l =

∫
(v‖ − u‖)j(µB/m)lf2πdv‖dµB
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Moment Definitions: Parallel Hierarchy
upper case for full moments, lower case for centered moments

• The first moments are density n and velocity u‖

n =

∫
fd3v

nu‖ =

∫
v‖fd

3v

. . .

• The next moments define the rest of the parallel series

P‖ = m

∫
v‖

2fd3v = p‖ + %u‖
2

Q‖ = m

∫
v‖

3fd3v = q‖ + 3p‖u‖ + %u‖
3

R‖ = m

∫
v‖

4fd3v = r‖ + 4q‖u‖ + 6p‖u‖
2 + %u‖

4

. . .
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Moment Definitions: Perpendicular Hierarchy
upper case for full moments, lower case for centered moments

• Adding a weight of µB defines the perpendicular series

P⊥ =

∫
µBfd3v = p⊥

Q⊥ =

∫
v‖µBfd

3v = q⊥ + p⊥u‖

R⊥ =

∫
v‖

2µBfd3v = r⊥ + 2q⊥u‖ + p⊥u‖
2

. . .

• And so on ...

R⊥⊥ =

∫
(µB)2fd3v/m = r⊥⊥

. . .
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Moments of Collision Operator yield friction forces

• Parallel Series:

Cu‖ = m

∫
v‖C[f ]d3v

Cp‖ = m

∫
(v‖ − u‖)2C[f ]d3v

Cq‖ =

∫
(v‖ − u‖)µBC[f ]d3v

...

• Perpendicular Series:

Cp⊥ =

∫
µBC[f ]d3v

Cq⊥ =

∫
v‖µBC[f ]d3v

...

• And so on ...

Cr⊥⊥ =

∫
(µB)2C[f ]d3v/m

...
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Full moment equations are naturally written in conservative form

• Conservation of Density and Momentum: ~U⊥ = ~E × b̂/B

∂t%+∇ · %
(
~U⊥ + u‖b̂

)
= 0

∂t%u‖ +∇ ·
(
%u‖~U⊥ + P‖b̂

)
− P⊥∇ · b̂ = neE‖ + Cu‖

• Parallel Series:

∂tP‖ +∇ ·
(
P‖~U⊥ +Q‖b̂

)
− 2Q⊥∇ · b̂ = 2nu‖eE‖ + CP‖

∂tQ‖ +∇ ·
(
Q‖~U⊥ +R‖b̂

)
− 3R⊥∇ · b̂ = 3P‖eE‖/m+ CQ‖

• Perpendicular Series:

B∂tP⊥/B +B∇ ·
(
P⊥~U⊥ +Q⊥b̂/B

)
= Cp⊥

B∂tQ⊥/B +B∇ ·
(
Q⊥~U⊥ +R⊥b̂

)
/B −R⊥⊥∇ · b̂ = P⊥eE‖/m+ CQ⊥

• and so on . . .
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Centered moment equations have a number of cancellations

• For a Maxwellian with anisotropic temperatures:
v2
T‖ = T‖/m v2

T⊥ = T⊥/m

r‖ = 3p‖v
2
T‖ r⊥ = p⊥v

2
T‖ r⊥⊥ = 2p⊥v

2
T⊥

• Parallel Series:

∂tp‖ +∇ ·
(
p‖~U + q‖b̂

)
+ 2p‖∂‖u‖ − 2q⊥∇ · b̂ = Cp‖

∂tq‖ +∇ ·
(
q‖~U + r‖b̂

)
+ 3q‖∂‖u‖ = 3v2

T‖∂‖p‖

+ 3
(
r⊥ + p‖(vT‖

2 − vT⊥2)
)
∇ · b̂+ Cq‖ − 3v2

T‖Cu‖

• Perpendicular Series:

B∂tB
−1p⊥ +∇ ·B−1

(
p⊥~U + q⊥b̂

)
= Cp⊥

B∂tB
−1q⊥ +B∇ ·B−1

(
q⊥~U + r⊥b̂

)
+ q⊥∂‖u‖ =

v2
T⊥∂‖p‖ +

(
r⊥⊥ + p⊥(vT‖

2 − vT⊥2)
)
∇ · b̂+ Cq⊥ − v2

T‖Cu‖

• and so on . . .
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Linear density response function is a useful metric for comparison

• Response function
δn

n
= Rω,k‖

qδφ

2T‖

• For an electrostatic wave, R = Z ′(ζ) where ζ = ω/21/2k‖vT and Z(ζ) is
the plasma dispersion function
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Ideal Moment Closure

• 2 moments (n, u‖)

• Sound wave resonance for specific real frequencies
• No damping
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Does Adding More Moments Help?

• 3 moments (n, u‖, p‖)

• Sound wave resonance for specific real frequencies
• No damping
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Does Adding More Moments Help? No!

• 4 moments (n, u‖, p‖, q‖)

• Adding moments improves accuracy for ω →∞
• Doesn’t help for ω → 0
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Chapman-Enskog approach to Landau fluid closure

• Sketch of Derivation: Starting from linearized Drift Kinetic Equation

∂tf1 + v‖b̂ · ∇f1 + νf1 = S1

• Solution in Fourier space f(x, t) =
∫
f̂(ω, k)eikx−iωtdkdω

f̂1 =
Ŝ1

i(kv‖ − ω) + ν

• Collisionless limit yields a dissipative term á la Landau

lim
ν→0

f̂1 = PV
Ŝ1

i(kv‖ − ω)
+ πŜ1δ(kv‖ − ω) −→ π

|k|
Ŝ1δ(v‖ − ω/k)
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Collisionless Landau fluid closures can be chosen to yield
high-fidelity linear response

• Since the remainder is driven by gradients S1 ∝ −∇‖mj + . . . , the
moment closure must have the leading form

m̂j+1 = −DjvT
∇‖
|∇‖|

m̂j −→ ∇‖mj+1 = DjvT |∇‖|mj

• Padé approximation can be used to choose coefficients Dj that
optimize accuracy of response function
• Fit to ω → 0 density response function and use standard fluid theory to get ω →∞ response
• G. W. Hammett & F. W. Perkins, Phys. Rev. Lett. (1990)

• Use linear response to ”remainder” of kinetic equation (analogous to
Chapman-Enskogg approach)
• Z. Y. Chang & J. D. Callen, Phys. Fluids B (1992)
• J. Y. Ji & E. Held, Phys. Plasmas (2013)
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Collisionless closures adds non-local anomalous transport

• Anomalous sub-diffusion operator vT |∇| yields ballistic transport
scaling ∆x ∼ vT∆t

|∇| ≡ |∇2|1/2 ∼ |k|

• The Hilbert transform H ∼ −ik/|k| is the building block for
|∇| = H∇ = ∇H

Hf(x) = −PV
∫ ∞

0

dx′
[f(x′ + x)− f(x′ − x)]

πx′
= −

∫
ik

|k|
f̂(k)eikxdk
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Efficient finite difference Hilbert transform has been derived,
implemented and used for gyro-Landau fluid simulations

• A. M. Dimits, I. Joseph and M. V. Umansky, Phys. Plasmas 21, 055907
(2014)(2014)
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w1 ak; að Þ ¼ w1 k; að Þ=a:

Thus, a reasonable starting ansatz for fits to 1=jkj with sums
of Lorentzians is a finite truncation of w1(k, a), e.g.,

wNþ k; a; b;Nð Þ ¼ b
XN"1

n¼0

an

k2 þ a2n
; (6)

where N is a positive integer (which hopefully need not be
large) and b is an overall multiplier, which for fitting purposes
may be taken to be a function of a and N. Heuristically,
wþ(k; a, b, N) can be expected to be a good fit over a wave-
number range delineated roughly by c!jkj!aN"1=c, where c
is a positive real number of order 1. This is indeed the case, as
can be seen from plots of the ratio of wþ to 1=jkj, i.e., of

jkjwþ k; a; b;Nð Þ ¼ bjkj
XN"1

n¼0

an

k2 þ a2n
;

which are shown in Fig. 2.
This figure shows that wNþ(k; a, b, N) with seven terms

can approximate 1=jkj to within a relative error of 2% over a
spectral range of approximately 103.

Here, we briefly comment on some favorable aspects of
the SMHS approach. The approximation by a sum of
Lorentzians or modified Helmholtz solves is applicable to
cases where there is spatial inhomogeneity in the operator,
for example, through spatial variation in the thermal velocity
or thermally averaged drift velocities in a toroidal implemen-
tation. This is not true of the Fourier or convolution methods.
The matrix multiplication method is applicable, but requires
calculation and storage of the kernel matrix, the size of
which can be much larger than the computational mesh. The
closure operator may in general be most easily represented
as a combination of local (e.g., differential) operators, quan-
tities that are functions of position, and nonlocal operators.
The SMHS method provides the flexibility to implement
some of the spatial dependence through spatially dependent
coefficients in the modified Helmholtz equation. Another
consideration that favors the SMHS method over direct
methods is the fact that in a toroidal application, e.g., a typi-
cal flux-tube based simulation geometry with offset-periodic
boundary conditions in the direction parallel to the magnetic
field, the perturbations may extend several poloidal circuits
in the parallel direction. For such a perturbation the nonlocal
operator should have good fidelity for these very long spatial
scales (or low wavenumbers) and the effective value of Ng

may be considerably larger than the number of cells in the
parallel direction in the simulation domain.

B. Computational performance

We have implemented the SMHS method in a one-
dimensional test code on a periodic domain. A comparison
was made of computational time for the application of the
operator by various methods, including the SMHS method,
using a single process on a compute node of the NERSC
Edison computer.16 The timings are for 1000 applications of
the operator in a loop of Fortran code. The other methods
compared include the Fourier method, coded in Fortran using
the FFTW3 library from within the Cray LibSci library, and
matrix multiplication by the discretized kernel using the
BLAS DGEMV routine from LibSci and the gfortran intrin-
sic MATMUL routine. The matrix multiplication is a realiza-
tion of the direct application of a delocalization kernel.12

The results are shown in Fig. 3. It is seen that the SMHS
method has similar computational scaling to the Fourier

FIG. 2. Plots of jkjwþ k; a; b;Nð Þ for a¼ 5, b¼ 1.04, N¼ 7. Frame (b) zooms
in on the region of good fit of wþ(k; a, b, N) to 1=jkj.

FIG. 3. Timings for the application of the jkj operator by various methods,
as indicated in the legend.
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(2015)

I. Joseph (LLNL) Closures BOUT++ 2018 22 / 38



Collisionless Closure Adds Landau Damping

• 2 moment equations (n, u‖)

• Closure equation for pressure

p‖ = nvT‖

√
π

2
Hu‖
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Collisionless Closure: More Moments Improve Accuracy

• 3 moment equations (n, u‖, p‖)

• Closure equation for heat flux

q‖ = nvT‖2

√
2

π
HT‖
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Collisionless Closure: More Moments Improve Accuracy

• 4 moment equations (n, u‖, p‖, q‖)

• Closure equations begin to include more moments

r‖ = nvT‖
2
√

2π

3π − 8
H
q‖

n
− 32− 9π

3π − 8

p‖

m
(T‖ − T̄‖) + 3

p‖

m
T‖
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Even a single moment can produce sensible results for ω → 0

• 1 moment equation (n)

• Closure equation for velocity

nu‖ = vT‖

√
2

π
(Hn+ nHeφ)
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A Collisional Extension of Collisionless Landau Fluid Closures

• In the collisional limit, the solution of the DKE with S1 ∝ −∇‖mj + . . .
has the form

lim
ν→∞

f1 =
S1

ν
−→ mj+1 = −χj∇‖mj

• Padé Approximation for combined closure must have the form

mj+1 = − 1

(|λj∇‖|+ 1)
χj∇‖mj

• The diffusivity χj is determined by the collisional limit

χj = jv2
T /νj

• The effective mean free path λj is determined by both limits
λj = jvT /νjDj
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Collision operator needed to specify collisional friction forces &
collision frequencies

• In collisional regions, the PDF is nearly isotropic

• Coulomb collision operator matrix elements tabulated in orthogonal
polynomial basis

• Laguerre-Legendre polynomials

• Defines infinite series of damping frequencies νmn
j

• Onsager symmetric in kinetic energy weighting m,n (diagonal in anisotropy order j)

• Friction forces needed to complete moment equations:

Cu‖ = ν001 %(ū1 − u‖) +ν011
(
q‖ + 2q⊥

)
m/5T

Cp‖ = ν110 (p̄− p) −2ν112
(
p‖ − p⊥

)
/3

Cp⊥ = ν110 (p̄− p) +ν112
(
p‖ − p⊥

)
/3

Cq‖ = −3ν101 p(ū− u‖) −3ν111
(
q‖ + 2q⊥

)
/5 −2ν003

(
q‖ − 3q⊥

)
/5

Cq⊥ = −ν101 p(ū− u‖) −ν111
(
q‖ + 2q⊥

)
/5 +ν003 (q‖ − 3q⊥)/5.
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Collisional closure is complicated by pitch-angle scattering

• Higher moments have many equations coupled by friction forces

• Pitch-angle scattering couples ‖,⊥,⊥⊥, . . . hierarchy

Cq‖ = . . . −3ν11
1

(
q‖ + 2q⊥

)
/5 −2ν00

3

(
q‖ − 3q⊥

)
/5

Cq⊥ = . . . −ν11
1

(
q‖ + 2q⊥

)
/5 +ν00

3 (q‖ − 3q⊥)/5.

• Full closure is complicated & potentially expensive to implement

• Need to invert a matrix of Landau fluid closure operators with
multiple mean free paths λj for each moment
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A surprisingly simple closure scheme has correct collisional and
collisionless limits

• Higher order anisotropies must become small in collisional limit

• If the anistropy of the closure moment q‖ ' 3q⊥ is neglected in the
friction force, only energy scattering remains

Cq‖ = . . . −3ν11
1

(
q‖ + 2q⊥

)
/5 + . . . ' −ν11

1 q‖

Cq⊥ = . . . −ν11
1

(
q‖ + 2q⊥

)
/5 + . . . ' −ν11

1 q⊥

• Thus, we can identify νj with an energy scattering frequency
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Combined Collisional-Collisionless Closure for heat flux q‖, q⊥

• 3‖ + 1⊥ moment equations (n, u‖, p‖; p⊥)

• Closure for anisotropic heat flux

q‖ = − 3

|λ‖∇‖|+ 1
nχ∇‖T‖ λ‖ =

3vT

ν11
1 2
√

2π
χ =

v2
T

ν11
1

q⊥ = − 1

|λ⊥∇‖|+ 1
nχ∇‖T⊥ λ⊥ =

vT

ν11
1

√
π/2

• Closure smoothly connects collisionless and collisional limits
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Collisional Landau fluid closure procedure can be generalized to
both higher and lower moment equations

• For higher moments: use energy scattering frequency

• For lower moments: can still identify a correct Padé approximation
• Even though self-collisions conserve particles, momentum and energy
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Friction forces yield additional terms:
frictional heat flux, thermal force, anisotropic electric conductivity

• Frictional Heat Fluxes: coefficient α = ν10
1 /ν11

1

qu‖ =
3/5

(|λ‖∇‖|+ 1)
αp‖(ū− u‖) qu⊥ =

2/5

(|λ⊥∇‖|+ 1)
αp⊥(ū− u‖)

• Thermal force has same coefficient α due to Onsager symmetry
ν10

1 = ν01
1

Fu‖ = −αν
11
1

T

[
3/5

(|λ‖∇‖|+ 1)
nχ∇T‖ +

2/5

(|λ⊥∇‖|+ 1)
nχ∇T⊥ − q̄1

]

• Anisotropic electrical resistivity operator

η‖

η⊥
= 1− α

T

ν11
1

ν00
1

(
3/5

|λ‖∇‖|+ 1
+

2/5

|λ⊥∇‖|+ 1

)
αT

• These collisional effects all vanish in collisionless limit!
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Collaboration with Jeong-Young Ji has led to highly accurate linear
collisional 3+1 electron Landau-fluid closures

• More advanced formulation:

• For e− e scattering alone, including collisional moments within closure
leads to 4 closure functions: q‖, q⊥, Cu‖, Cπ‖ = Cp‖ − Cp⊥

• Symmetric closure matrix has n(n+ 1)/2 = 10 matrix elements

• Results are fit to

• Exact linear kinetic model with Coulomb collisions (6400 moments)
• Asymptotic results for collisionless response function

• A simple analytic fitting formula was found to capture coefficients
within a few % accuracy for all collisionality regimes

K̃AB =
akα

1 + d1kδ + d2k2δ + d3k3δ + d4k4δ + d5k5δ + d6k6δ
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Collisional closures as functions of kλ

• Coefficients given in spherical harmonic form

where

T! ¼ T1 þ
2

5n0
pk: (88)

Note that the fP00;P10;P01;P20g moment equations of Eq.
(87) are trivially satisfied, which verifies that the fluid equa-
tions have been eliminated from the kinetic equation.

We perform a Fourier transform of Eq. (87): Aðt; zÞ
! ~Aðx; kÞ for a function A, @=@t! &ix, and @=@z! ik,
and write the solution in k-space as

~f
C

1 ¼
1

ikv0

~gC

sk & f
; (89)

where ~gC is the Fourier transform of the right hand side of
Eq. (87) and

f ¼ xþ i!

kv0
: (90)

Next, we take moments using ~hk ¼ &v0T0

Ð
dvP11 ~f

C

1 and

~rk ¼ 4
5 v0T0

Ð
dvP30 ~f

C

1 to obtain

~hk

~rk

0

@

1

A ¼ 1

D

Shh Shr

Srh Srr

 ! 1

2
n0v0

~T!

v0~pk

0

B@

1

CA; (91)

FIG. 1. Closures for Z¼ 1 computed
from N¼ 100 (red, long-dashed), 400
(blue, short-dashed), 1600 (green,
dashed-dotted), and 6400 (cyan,
dashed-dotted-dotted). The fitted clo-
sures (black, solid with squares) are
also shown. The collisional [magenta,
dotted (with circles)] and collisionless
[gray, thin solid (with diamonds)] clo-
sures are also shown.
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• SHS method can be applied to each coefficient
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Outline

• Motivation: Edge Plasma Physics

• Moments of the Gyrokinetic Equation

• Review of Collisionless Landau Fluid Closures

• Connecting the Collisionality Limits

• Conclusion
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Conclusion

• Landau fluid closures can connect collisionless & collisional limits

• Collisionless regime has ballistic ∆x ∼ vT ∆t anomalous sub-diffusive transport

• Collisional regime has usual diffusive transport (∆x)2 ∼ χ∆t

• Smooth connection between regimes

• Collisional form derived from closure moment equations (q‖, q⊥)

• Correct collisional limit is only obtained when using the collisional Landau closure

• Neglecting pitch-angle scattering in closure itself yields simple form

• Includes frictional heat flux, parallel thermal force, and anisotropic resistivity

• Explicit Onsager symmetry found to hold

• Approach easily generalized to higher & lower moment closures
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